Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
Sci Rep ; 14(1): 8646, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622188

RESUMO

Human activities have increased with urbanisation in the Erhai Lake Basin, considerably impacting its eco-environmental quality (EEQ). This study aims to reveal the evolution and driving forces of the EEQ using water benefit-based ecological index (WBEI) in response to human activities and policy variations in the Erhai Lake Basin from 1990 to 2020. Results show that (1) the EEQ exhibited a pattern of initial degradation, subsequent improvement, further degradation and a rebound from 1990 to 2020, and the areas with poor and fair EEQ levels mainly concentrated around the Erhai Lake Basin with a high level of urbanisation and relatively flat terrain; (2) the EEQ levels were not optimistic in 1990, 1995 and 2015, and areas with poor and fair EEQ levels accounted for 43.41%, 47.01% and 40.05% of the total area, respectively; and (3) an overall improvement in the EEQ was observed in 1995-2000, 2000-2005, 2005-2009 and 2015-2020, and the improvement was most significant in 1995-2000, covering an area of 823.95 km2 and accounting for 31.79% of the total area. Results also confirmed that the EEQ changes in the Erhai Lake Basin were primarily influenced by human activities and policy variations. Moreover, these results can provide a scientific basis for the formulation and planning of sustainable development policy in the Erhai Lake Basin.


Assuntos
Lagos , Desenvolvimento Sustentável , Humanos , Atividades Humanas , China , Monitoramento Ambiental/métodos
2.
Sci Total Environ ; 927: 172010, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575020

RESUMO

Climate change and human activity are essential factors affecting marine biodiversity and aquaculture, and understanding the impacts of human activities on the genetic structure to increasing high temperatures is crucial for sustainable aquaculture and marine biodiversity conservation. As a commercially important bivalve, the Manila clam Ruditapes philippinarum is widely distributed along the coast of China, and it has been frequently introduced from Fujian Province, China, to other regions for aquaculture. In this study, we collected four populations of Manila clams from different areas to evaluate their thermal tolerance by measuring cardiac performance and genetic variations using whole-genome resequencing. The upper thermal limits of the clams showed high variations within and among populations. Different populations displayed divergent genetic compositions, and the admixed population was partly derived from the Zhangzhou population in Fujian Province, implying a complex genomic landscape under the influence of local genetic sources and human introductions. Multiple single nucleotide polymorphisms (SNPs) were associated with the cardiac functional traits, and some of these SNPs can affect the codon usage and the structural stability of the resulting protein. This study shed light on the importance of establishing long-term ecological and genetic monitoring programs at the local level to enhance resilience to future climate change.


Assuntos
Aquicultura , Bivalves , Animais , China , Bivalves/genética , Bivalves/fisiologia , Mudança Climática , Polimorfismo de Nucleotídeo Único , Adaptação Fisiológica/genética
3.
Sci Total Environ ; 928: 172198, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580114

RESUMO

Pedestrian spaces adjacent to arterial roads are characterized by the dominance of traffic noise alongside various human activities. Research on the impact of traffic noise on the soundscape evaluation of pedestrian spaces has not considered human activities spatial contexts. To address this research gap, the present study constructed auditory environments for pedestrian spaces in the contexts of commuting, residential, and commercial activities. A total of seven auditory environments were subjected to laboratory auditory evaluations, including perceived dominance of sound source, acoustic comfort, and perceived affective quality of the soundscape. The results indicated that in pedestrian spaces with constant traffic noise, the presence of significant human activity sounds led to a decreased perceived dominance of traffic noise and an increased acoustic comfort, despite the higher acoustic energy. Thus, pedestrian spaces with a variety of human activity received better soundscape evaluations. The elements that reflected the human activities spatial contexts, including the types and intensity of human activities, played a crucial role in soundscape evaluations. Better acoustic comfort was reported in pedestrian spaces characterized by low-intensity residential activities and high-intensity commercial activities. Additionally, pedestrian spaces with more intense activities offered an actively engaging soundscape. The findings can provide reference for a more accurate evaluation of the soundscape in pedestrian spaces and guide the soundscape design of pedestrian environments.

4.
ACS Appl Mater Interfaces ; 16(15): 19411-19420, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588486

RESUMO

Zinc oxide (ZnO) is a widely employed material for enhancing the performance of cellulose-based triboelectric nanogenerators (C-TENGs). Our study provides a novel chemical interpretation for the improved output efficiency of ZnO in C-TENGs. C-TENGs exhibit excellent flexibility and integration, achieving a maximum open-circuit voltage (Voc) of 210 V. The peak power density is 54.4 µW/cm2 with a load resistance of 107 Ω, enabling the direct powering of 191 light-emitting diodes with the generated electrical output. Moreover, when deployed as self-powered sensors, C-TENGs exhibit prolonged operational viability and responsiveness, adeptly discerning bending and motion induced by human interaction. The device's sensitivity, flexibility, and stability position it as a promising candidate for a diverse array of energy-harvesting applications and advanced healthcare endeavors. Specifically, envisaging sensitized wearable sensors for human activities underscores the multifaceted potential of C-TENGs in enhancing both energy-harvesting technologies and healthcare practices.


Assuntos
Óxido de Zinco , Humanos , Fenômenos Físicos , Movimento (Física) , Celulose , Atividades Humanas
5.
Chemosphere ; 357: 142041, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636919

RESUMO

Phthalate esters (PAEs) are widely prevalent in agricultural soil and pose potential risks to crop growth and food safety. However, the current understanding of factors influencing the behavior and fate of PAEs is limited. This study conducted a large-scale investigation (106 sites in 18 counties with 44 crop types) of 16 types of PAEs on a tropical island. Special attention was given to the impacts of land use type, soil environmental conditions, agricultural activity intensity, and urbanization level. The health risks to adults and children from soil PAEs via multiple routes of exposure were also evaluated. The results showed that the mean concentration of PAEs was 451.87 ± 284.08 µg kg-1 in the agricultural soil. Elevated agricultural and urbanization activities contributed to more pronounced contamination by PAEs in the northern and southern regions. Land use type strongly affected the concentration and composition of PAEs in agricultural soils, and the soil PAE concentration decreased in the order of vegetable fields, orchards, paddy fields, and woodlands. In paddy fields, di-isobutyl phthalate and di-n-butyl phthalate made more substantial contributions to the process through which the overlying water inhibited volatilization. Soil microplastic abundance, pesticide usage, crop yield, gross domestic product, and distance to the nearest city were calculated to be the major factors influencing the concentration and distribution of PAEs. Soil pH, organic matter content, microplastic abundance and the fertilizer application rate can affect the adsorption of PAEs by changing the soil environment. A greater risk was detected in the northern region and paddy fields due to the higher soil PAE concentrations and the dietary structure of the population. This study reveals important pathways influencing the sources and fate of PAE pollution in agricultural soils, providing fundamental data for controlling PAE contamination.

6.
Front Vet Sci ; 11: 1374677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645643

RESUMO

Apex predators are exposed to antimicrobial compounds and resistant microbes, which accumulate at different trophic levels of the related ecosystems. The study aimed to characterize the presence and the antimicrobial resistance patterns of fecal Escherichia coli isolated from cloacal swab samples obtained from wild-living American crocodiles (Crocodylus acutus) (n = 53). Sampling was conducted within the distinctive context of a freshwater-intensive aquaculture farm in Costa Rica, where incoming crocodiles are temporarily held in captivity before release. Phenotypic antimicrobial susceptibility profiles were determined in all isolates, while resistant isolates were subjected to whole-genome sequencing and bioinformatics analyses. In total, 24 samples contained tetracycline-resistant E. coli (45.3%). Isolates carried either tet(A), tet(B), or tet(C) genes. Furthermore, genes conferring resistance to ß-lactams, aminoglycosides, fosfomycin, sulfonamides, phenicol, quinolones, trimethoprim, and colistin were detected in single isolates, with seven of them carrying these genes on plasmids. Genome sequencing further revealed that sequence types, prevalence of antibiotic resistance carriage, and antibiotic resistance profiles differed between the individuals liberated within the next 24 h after their capture in the ponds and those liberated from enclosures after longer abodes. The overall presence of tetracycline-resistant E. coli, coupled with potential interactions with various anthropogenic factors before arriving at the facilities, hinders clear conclusions on the sources of antimicrobial resistance for the studied individuals. These aspects hold significant implications for both the aquaculture farm's biosecurity and the planning of environmental monitoring programs using such specimens. Considering human-crocodile conflicts from the One Health perspective, the occurrence of antimicrobial resistance underscores the importance of systematical surveillance of antibiotic resistance development in American crocodiles.

7.
Ecol Evol ; 14(4): e11270, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633522

RESUMO

The Sichuan golden snub-nosed monkey (Rhinopithecus roxellana) is a rare and endangered primate species endemic to China. Conducting research on the population distribution changes of the Sichuan golden snub-nosed monkey holds paramount importance for its conservation. Our study represented a comprehensive investigation into the population distribution of the Sichuan snub-nosed monkey by integrating data acquired from field surveys, protected areas, and historical records and using Geographic Information Systems (GIS) to explore changes in distribution across various time periods, including the historical (the Mid-to-Late Pleistocene), recent (1980-2000), and current (2001-2023). The research findings demonstrate a significant shift in the distribution range of the Sichuan golden snub-nosed monkey compared to historical time frames. Notably, between 1980 and 2000, there was a sharp decline in distribution area. Analyses revealed that the southernmost distribution county for the Sichuan golden snub-nosed monkey in Sichuan Province has shifted northward from Huili to Kangding. Furthermore, distribution changes in Sichuan Province are not solely characterized by a reduction in habitat area but also by a decrease in vertical distribution zones. Regions in the northeastern part of Sichuan with elevations below 1000 m, such as Guang'an City, Bazhong City, Dazhou City, and Nanchong City, no longer support the presence of the Sichuan golden snub-nosed monkey. At present, the distribution range is confined to elevations between 1000 and 4000 m in the two major mountain ranges of Qionglai and Minshan. A holistic approach is required to safeguard this species. The establishment of movement corridors can play a critical role in enhancing the overall connectivity of current distribution areas. Additionally, we propose implementing a hierarchical approach to protect current habitats. Spatially differentiated conservation measures should be implemented to prioritize the protection of key habitats while simultaneously monitoring anthropogenic activities in non-key habitats to prevent further fragmentation and isolation of the monkey's distribution areas.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38459284

RESUMO

Understanding the propagation of agricultural droughts (AD) is important to comprehensively assess drought events and develop early warning systems. The present study aims to assess the impacts of climate change and human activities on drought characteristics and propagation from meteorological drought (MD) to AD in the Yellow River Basin (YRB) over the 1950-2021 period using the Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized Soil Moisture Index (SSMI). In total, the YRB was classified into three groups of catchments for spring wheat and four groups of catchments for winter wheat based on different human influence degrees (HId). In addition, the entire study period was divided into periods with natural (NP), low (LP), and high (HP) impacts of human activities, corresponding to 1950-1971, 1972-1995, and 1996-2021, respectively. The results demonstrated the significance and credibility of the application of the natural and human-impacted catchment comparison method for drought characteristics and propagation from meteorological to agricultural drought in the YRB. Winter wheat showed a more pronounced drying trend than spring wheat under both MD and AD. The results showed meteorological drought intensity (MDI) and agricultural drought intensity (ADI) intensified for spring and winter wheat in NP, with correspondingly a short propagation time, followed by those in the LP and HP in catchments minimally impacted by human activities. On the other hand, increases in the MDI and ADI, as well as in their times, for both spring and winter wheat were observed from the LP to the HP in all catchments. The MDI, ADI, and their propagation times for winter wheat generally showed greater fluctuations than those for spring wheat. Human activities increasingly prolonged the drought propagation time. In contrast, climate change insignificantly shortened the drought propagation time.

9.
Environ Res ; 252(Pt 1): 118794, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38555087

RESUMO

The Tibetan Plateau (TP) constitutes a fragile and sensitive ecological environment, which is vulnerable to global climate change and human activities. To investigate the anthropogenic effects on the TP's environmental system is valuable for guiding human responses and adaptations to future environmental changes. In this study, we detailedly analyzed the geochemical elements of four representative soil sections developed on loess from Ganzi, Jinchuan, Aba, and Chuanzhusi in the eastern TP. The chemical elemental profiles distinctly indicated the presence of typical anthropogenic elements (Cu, Zn, Ni, Cr, Pb, Mn, and Fe), underscoring the substantial influence of human activities on TP soil, and showing spatial variance. Our results indicate that anthropogenic impacts were relatively low at Aba and Ganzi, resulting in a deficit of anthropogenic elements at the surface layer. Whereas at Jinchuan and Chuanzhusi, relatively intense anthropogenic impacts have led to the enrichment of anthropogenic elements in the topsoil. We infer that agricultural activities, increased traffic, and expansion of tourism activities were the major factors affecting the anthropogenic elements of TP soils. Our study highlights the impact of human activities on soil geochemical processes in the Tibetan Plateau.

10.
Sci Rep ; 14(1): 6967, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521805

RESUMO

In this study, the ecological impact of human activities and the space occupied by construction and arable land on the Tibetan Plateau were examined, focusing on changes in the net primary productivity (NPP) as a key indicator of ecological health. With the utilization of land use data and multiyear average NPP data from 2002 to 2020, we analyzed the effects of the conversion of zonal vegetation into construction and arable land on carbon sequestration and oxygen release in Chengguan District, Lhasa city. Our findings indicated a marked spatial difference in the NPP among different land types. Regarding the original zonal vegetation, the NPP ranged from 0.2 to 0.3 kg/m2. Construction land showed a decrease in the NPP, with values ranging from 0.16 to 0.26 kg/m2, suggesting a decrease in ecological productivity. Conversely, arable land exhibited an increase in the NPP, with average values exceeding 0.3 kg/m2. This increase suggested enhanced productivity, particularly in regions where the original zonal vegetation provided lower NPP values. However, this enhanced productivity may not necessarily indicate a positive ecological change. In fact, such increases could potentially disrupt the natural balance of ecosystems, leading to unforeseen ecological consequences. The original zonal vegetation, with NPP values ranging from 0.12 to 0.43 kg/m2, exhibited higher ecological stability and adaptability than the other land types. This wider NPP range emphasizes the inherent resilience of native vegetation, which could sustain diverse ecological functions under varying environmental conditions. These findings demonstrate the urgent need for sustainable land use management on the Tibetan Plateau. This study highlights the importance of considering the ecological impact of land use changes in regional development strategies, ensuring the preservation and enhancement in the unique and fragile plateau ecosystem.


Assuntos
Ecossistema , Modelos Teóricos , Humanos , Tibet , Cidades , Atividades Humanas , China , Mudança Climática
11.
Can J Occup Ther ; : 84174241233519, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436121

RESUMO

Background. Meaningful activity participation has been identified as a key outcome of services designed to support individuals during and following homelessness. Little is known about the effectiveness of interventions for promoting this outcome. Purpose. To identify the range and effectiveness of interventions on promoting meaningful activity participation among persons with experiences of homelessness. Method. We conducted a systematic review using the Joanna Briggs Institute methodology following PRISMA guidelines including a critical appraisal and narrative synthesis. Findings. Of 12,343 titles and abstracts screened, we included 12 studies. The authors of the included studies primarily used standardized measures of meaningful activity engagement. Critical appraisal scores ranged from 50.0 to 77.8. The most common interventions evaluated in the included studies were psychosocial interventions (n = 6; 50.0%), followed by case management and housing support interventions (n = 4; 33.3%) and Housing First (n = 2; 16.7%). While several interventions demonstrated effectiveness in promoting meaningful activity participation including psychosocial and case management interventions, Housing First, Critical Time Intervention, and a peer support intervention were found to be ineffective for promoting engagement in meaningful activity. Conclusion. Few intervention studies have been conducted that demonstrate effectiveness for promoting participation in meaningful activity for individuals during and following homelessness. Occupational therapy researchers and practitioners can build on existing evidence by developing and evaluating novel approaches by co-designing interventions in collaboration with persons with experiences of homelessness and service providers.

12.
Environ Monit Assess ; 196(4): 341, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436747

RESUMO

Bacterial communities in epilithic biofilm plays an important role in biogeochemistry processes in freshwater ecosystems. Nevertheless, our understanding of the geographical and seasonal variations of the composition of bacterial communities in the biofilm of gravels on river bed is still limited. Various anthropogenic activities also influence the biofilm bacteria in gravel rivers. By taking the Shiting River in the upper Yangtze River basin in Sichuan Province as an example, we studied the geographical and seasonal variations of epilithic bacteria and the impacts of weirs and other human activities (e.g., sewage pollution). The river has experienced severe degradation since the Ms 8.0 Wenchuan Earthquake, and weirs were constructed to prevent bed erosion. We collected epilithic biofilms samples at 17 sites along ~ 30 km river reach of the Shiting River in the autumn of 2021 and the summer of 2022, respectively. We applied 16S rRNA gene high-throughput sequencing technology and Functional Annotation of Prokaryotic Taxa (FAPROTAX) to analyze the seasonal and biogeographic patterns and potential functions of the biofilm bacterial communities. The results showed that epilithic bacteria from the two surveys exhibited variation in community composition, bacterial diversity and potential functions. The bacteria samples collected in the autumn have much higher alpha diversity and richness than those collected in the summer. Bacterial richness and diversity were lower downstream of the weirs than upstream. Low diversity was observed at a sampling site influenced by sewage inflow, which contains high level of nitrogen-related chemicals.


Assuntos
Efeitos Antropogênicos , Ecossistema , Humanos , Estações do Ano , RNA Ribossômico 16S , Esgotos , Monitoramento Ambiental , Bactérias/genética , Biofilmes , China
13.
Water Res ; 255: 121509, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537491

RESUMO

Interconnected river-lake systems record sedimentary organic carbon (OCsed) dynamics and watershed environmental changes, providing valuable information for global carbon budgets and watershed management. However, owing to the evolving river-lake interactions under global change, monitoring OCsed is difficult, thereby impeding the understanding of OCsed transport and fate. This study provided new insights into the dynamical mechanisms of OCsed in a typical river-lake system consisting of Dongting Lake and its seven inlet/outlet rivers (the three inlets of the Yangtze River and four tributaries) over the last century using stable isotope tracing and quantified the influences of climate change and human activities on OCsed. Results indicated that exogenous OC dominated the OCsed in the lake (58.2 %-89.0 %) and was lower in the west than in the east due to the differences in the material inputs and depositional conditions within the lake. Temporally, the distribution patterns of OCsed sources mainly responded to human activities in the basin rather than to climate change. Before 2005, the Yangtze River contributed the most OCsed (53.5 %-74.6 %), attributed to the high-intensity land use changes (path coefficient (r∂): 0.48, p-value < 0.01) and agriculture-industry activities (r∂: 0.44, p-value < 0.001) in the Yangtze River basin that increased soil erosion. After 2005, a large amount of Yangtze River OC was intercepted by the Three Gorges Dam, altering the OC exchange in the river-lake system and shifting OCsed dominance to the four tributaries (52.2 %-63.8 %). These findings highlight the active response of OCsed to the river-lake interaction evolution and anthropogenic control, providing critical information for regulating watershed management behavior under global change.

14.
Environ Res ; 252(Pt 1): 118815, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38555085

RESUMO

Accelerated urbanization in developing countries led to a typical gradient of human activities (low, moderate and high human activities), which affected the pollution characteristics and ecological functions of aquatic environment. However, the occurrence characteristics of typical persistent organic pollutants, including organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs), and bacterioplankton associated with the gradient of human activities in drinking water sources is still lacking. Our study focused on a representative case - the upper reaches of the Dongjiang River (Pearl River Basin, China), a drinking water source characterized by a gradient of human activities. A comprehensive analysis of PAHs, OCPs and bacterioplankton in the water phase was performed using gas chromatography-mass spectrometry (GC-MS) and the Illumina platform. Moderate human activity could increase the pollution of OCPs and PAHs due to local agricultural activities. The gradient of human activities obviously influenced the bacterioplankton community composition and interaction dynamics, and low human activity resulted in low bacterioplankton diversity. Co-occurrence network analysis indicated that moderate human activity could promote a more modular organization of the bacterioplankton community. Structural equation models showed that nutrients could exert a negative influence on the composition of bacterioplankton, and this phenomenon did not change with the gradient of human activities. OCPs played a negative role in shaping bacterioplankton composition under the low and high human activities, but had a positive effect under the moderate human activity. In contrast, PAHs showed a strong positive effect on bacterioplankton composition under low and high human activities and a weak negative effect under moderate human activity. Overall, these results shed light on the occurrence characteristics of OCPs, PAHs and their ecological effects on bacterioplankton in drinking water sources along the gradient of human activities.

15.
Huan Jing Ke Xue ; 45(2): 826-836, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471921

RESUMO

In order to better support the construction of the capital water conservation functional area and ecological environment support area, research on the chemical characteristics of groundwater and its formation mechanism in the dry period in the Zhangjiakou area can provide a great reference for the rational development and utilization of groundwater resources. A total of 41 groups of groundwater samples were collected, and the hydrochemical types, composition characteristics, and control factors of groundwater in the study area were analyzed by using the combined method of descriptive statistical analysis, Piper triplot, correlation analysis, Gibbs plot, and ion ratio. The results showed that the groundwater in the study area was weakly alkaline, with the total hardness and ρ(TDS) ranging from 105.00 mg·L-1 to 1 433.00 mg·L-1 and 137.00 mg·L-1 to 2 286.00 mg·L-1, respectively. The total hardness and TDS mass concentrations of groundwater in the Bashang area were higher than those in the Baxia area. HCO3- and Na+ were the main dominant anions and cations in the groundwater in the study area. The highest overstandard rate of the main components in groundwater was that of total hardness (36.59%). The overstandard rate and maximum excess multiple of each component in groundwater in the Bashang area were greater than those in the Baxia area. HCO3-Ca·Mg·Na was the main type of groundwater hydrochemistry in the study area, and there was little difference between the Bashang area and the Baxia area. SO42-, Cl-, HCO3-, Na+, and Mg2+ contributed the most to TDS. The chemical characteristics of groundwater were affected by weathering and filtration of rock minerals such as salt rock, albite, and dolomite; cation exchange; and human activities. Evaporative crystallization and atmospheric precipitation contributed to a small part of the main ion source of groundwater in the area. The effect of human activities on groundwater in the Bashang area was greater than that in the Baxia area, and NO3- mainly originated from agricultural activities.

16.
Animals (Basel) ; 14(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473081

RESUMO

In the face of global species loss, it is paramount to understand the effects of human activity on vulnerable species, particularly in highly diverse, complex systems. The Greater Madidi Landscape in the Bolivian Amazon includes several biodiverse protected areas that were created with the goal of sustaining healthy and diverse ecosystems while not impeding the livelihoods of local indigenous peoples. In this study, we sought to use camera trap data and single-species occupancy analysis to assess the impacts of different forms of human activity on four species of small felids: ocelots (Leopardus pardalis), margays (Leopardus wiedii), jaguarundi (Herpailurus yagouaroundi), and oncilla (Leopardus tigrinus). We modeled both human variables (proximity to indigenous communities, roads, and tourist camps) and non-human variables (terrain ruggedness, proximity to rivers, canopy height, prey availability, and large cat abundance). Margay occupancy was unaffected by any of these human variables and ocelots showed only weak evidence of being affected by tourism. Ocelots were particularly pervasive throughout the study area and were consistently estimated to have high occupancy probability. We did not obtain sufficient data on jaguarundi or oncilla to reliably model these effects. Our results indicate that small cats successfully coexist both with each other and with the surrounding human activity in this unique landscape, which serves as a model for global protected area management.

17.
Environ Res ; 251(Pt 1): 118549, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38412915

RESUMO

Antimicrobial Resistance (AMR) poses a global threat to both human health and environmental well-being. Our study delved into Costa Rican wildlife reserves, uncovering a substantial human impact on these ecosystems and underscoring the imperative to pinpoint AMR hotspots. Embracing a One Health perspective, we advocated for a comprehensive landscape analysis that intricately intertwined geographic, climatic, forest, and human factors. This study illuminated the link between laboratory results and observed patterns of antimicrobial use, thereby paving the way for sustainable solutions. Our innovative methodology involved deploying open-ended questions to explore antimicrobial usage across livestock activities, contributing to establishing a comprehensive methodology. Non-invasive sampling in wildlife emerged as a critical aspect, shedding light on areas contaminated by AMR. Feline species, positioned at the apex of the food chain, acted as sentinels for environmental health due to heightened exposure to improperly disposed waste. Regarding laboratory findings, each sample revealed the presence of at least one antimicrobial resistance gene (ARG). Notably, genes encoding resistance to tetracyclines dominated (94.9%), followed by beta-lactams (75.6%), sulfonamides (53.8%), aminoglycosides (51.3%), quinolones (44.9%), phenicols (25.6%), and macrolides (20.5%). Genes encoding polymyxins were not detected. Moreover, 66% of samples carried a multi-resistant microbiome, with 15% exhibiting resistance to three antimicrobial families and 51% to four. The absence of a correlation between forest coverage and ARG presence underscored the profound human impact on wildlife reserves, surpassing previous estimations. This environmental pressure could potentially modify microbiomes and resistomes in unknown ways. As not all antimicrobial families encoding ARGs were utilized by farmers, our next step involved evaluating other human activities to identify the primary sources of contamination. This comprehensive study contributed crucial insights into the intricate dynamics of AMR in natural ecosystems, paving the way for targeted interventions and sustainable coexistence.

18.
Sci Total Environ ; 919: 170938, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354795

RESUMO

Stratigraphic determination of the Anthropocene, the "Great Acceleration", requires more key globally synchronous stratigraphic markers which reflect the significant human impacts on Earth. Lacustrine sediment magnetic characteristics are of considerable importance in Anthropocene studies because they respond sensitively to environmental changes. There are many shallow lakes in the Songnen Plain (SNP) in northeast China, which are conducive to obtaining Anthropocene sedimentary records. This study explored magnetic materials in lacustrine sediment responses to environmental evolution impact by human activities on the SNP by measuring magnetic parameters in dated sediment cores from 5 shallow lakes in the SNP, northeast China. The results revealed that detrital magnetite and hematite dominated the magnetic minerals in lake sediments. The persistently low value of magnetic susceptibility might be caused by the low content of natural ferrimagnetic minerals in Quaternary fluvial deposits and humus-rich black soil in the catchment, and the loss of magnetic materials during the transport process. In Lake Longjiangpao (LJP), the magnetic concentrations significantly responded to regional precipitation, whereas in the other 4 lakes in the center of the plain, the parameters tended to reflect complex human activities. However, the isothermal remanent magnetization ratio (S-300), which is indicative of the ratio of hematite to magnetite, exhibited relatively consistent variations in the 5 studied lakes. After 1950, the "Great Acceleration", the increase of S-300 indicated a relative proportion of magnetite in sediments, and was positively correlated with the growth of human-activity proxies (Gross Domestic Product (GDP) and population). Thus, this proxy can be regarded as a useful indicator of the beginning of the Anthropocene in the studied region. This study provides new insights into the estimation of local human activities in history and possible evidence for the global definition of the Anthropocene.

19.
Sci Total Environ ; 918: 170507, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309354

RESUMO

Conveyance and modification of carbon-isotope signals within the karst system remain difficult to constrain, due to the complexity of interactions between multiple components, including precipitation, bedrock, soil, atmosphere, and biota. Cave monitoring is thus critical to understanding both their transport in the karst system and dependence on local hydroclimatic conditions. Jiguan Cave, located in Funiu Mountain in central China, is representative of karst tourist caves with relatively thin epikarst zone. We conducted a comprehensive monitoring program of cave climate from 2018 to 2021 and measured δ13C during 2021 in monthly and heavy-rainfall samples of soil CO2, cave CO2, cave water (drip water and underground river), and underground river outlet. Our results demonstrate synchronous variations between CO2 concentration and δ13CCO2 in both soil and cave air on seasonal time scales. Cave pCO2 and carbon-isotope composition further exhibited a high sensitivity to human respiration with fluctuations of ~2000-3000 ppm within 4 days during the cave closure period in July 2021 without tourists. 13C-depleted isotopic signal of cave air in summer is the mixture of human respiration and soil CO2 which varies as a function of regional hydrological conditions of the summer monsoon during the rainy season with high temperatures and humidity. However, respired CO2 from the overlying soil was expected to be the only principal source of the cave CO2 when the anthropogenic CO2 source was removed. The high seasonal amplitude of cave air δ13CCO2 reflects ventilation dynamics, which leads to a prominent contribution from the external atmosphere during winter. Intriguingly, although the δ13C signal reflects complex vertical processes in the vertical karst profile, a heavy summer rainfall event was related to anomalously high δ13C values of cave water that can be utilized to interpret rainfall intensity and regional hydroclimate.

20.
Heliyon ; 10(2): e24324, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298698

RESUMO

Human activities along southwest border of China exert significant influences on sustainable development of regional economy, politics, and environment among countries Vietnam, Laos, and Myanmar. However, related empirical studies remain very limited due to the low availability and comparability of small-scale statistic data in that region. Fortunately, Nighttime light (NTL) images provide uniform, consistent and valuable data sources. Using NTL data from 1992 to 2013, this article seeks to contribute the literature by investigating the trend of relative intensity of human activities between China and her southwest neighborhoods. We find that the human activities intensity of Chinese borderland maintained advantage over her neighborhoods, and the trend of this advantage is nonlinear. Regional development policy launched by Chinese government is considered to be a possible explanation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...